Copied to
clipboard

G = C7×C426C4order 448 = 26·7

Direct product of C7 and C426C4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7×C426C4, C426C28, M4(2)⋊2C28, C28.27C42, C4⋊C43C28, (C4×C28)⋊16C4, C4.1(C4×C28), C14.26C4≀C2, C28.51(C4⋊C4), (C2×C28).69Q8, (C2×C28).506D4, (C7×M4(2))⋊8C4, (C2×C42).7C14, C23.31(C7×D4), C42⋊C2.2C14, (C22×C14).151D4, (C2×M4(2)).6C14, C28.110(C22⋊C4), (C14×M4(2)).18C2, (C22×C28).570C22, C14.23(C2.C42), C4.2(C7×C4⋊C4), (C7×C4⋊C4)⋊10C4, C2.3(C7×C4≀C2), (C2×C4×C28).30C2, C22.3(C7×C4⋊C4), (C2×C4).12(C7×Q8), (C2×C4).65(C2×C28), (C2×C4).142(C7×D4), C4.25(C7×C22⋊C4), (C2×C14).20(C4⋊C4), (C2×C28).260(C2×C4), C22.28(C7×C22⋊C4), C2.4(C7×C2.C42), (C2×C14).71(C22⋊C4), (C7×C42⋊C2).16C2, (C22×C4).103(C2×C14), SmallGroup(448,143)

Series: Derived Chief Lower central Upper central

C1C4 — C7×C426C4
C1C2C22C23C22×C4C22×C28C7×C42⋊C2 — C7×C426C4
C1C2C4 — C7×C426C4
C1C2×C28C22×C28 — C7×C426C4

Generators and relations for C7×C426C4
 G = < a,b,c,d | a7=b4=c4=d4=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=c-1 >

Subgroups: 170 in 110 conjugacy classes, 58 normal (42 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, C23, C14, C14, C14, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C28, C28, C2×C14, C2×C14, C2×C42, C42⋊C2, C2×M4(2), C56, C2×C28, C2×C28, C22×C14, C426C4, C4×C28, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×C56, C7×M4(2), C7×M4(2), C22×C28, C22×C28, C2×C4×C28, C7×C42⋊C2, C14×M4(2), C7×C426C4
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, Q8, C14, C42, C22⋊C4, C4⋊C4, C28, C2×C14, C2.C42, C4≀C2, C2×C28, C7×D4, C7×Q8, C426C4, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C7×C2.C42, C7×C4≀C2, C7×C426C4

Smallest permutation representation of C7×C426C4
On 112 points
Generators in S112
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 83)(2 84)(3 78)(4 79)(5 80)(6 81)(7 82)(8 104 39 48)(9 105 40 49)(10 99 41 43)(11 100 42 44)(12 101 36 45)(13 102 37 46)(14 103 38 47)(15 28 30 107)(16 22 31 108)(17 23 32 109)(18 24 33 110)(19 25 34 111)(20 26 35 112)(21 27 29 106)(50 95)(51 96)(52 97)(53 98)(54 92)(55 93)(56 94)(57 68)(58 69)(59 70)(60 64)(61 65)(62 66)(63 67)(71 86)(72 87)(73 88)(74 89)(75 90)(76 91)(77 85)
(1 50 77 59)(2 51 71 60)(3 52 72 61)(4 53 73 62)(5 54 74 63)(6 55 75 57)(7 56 76 58)(8 27 39 106)(9 28 40 107)(10 22 41 108)(11 23 42 109)(12 24 36 110)(13 25 37 111)(14 26 38 112)(15 105 30 49)(16 99 31 43)(17 100 32 44)(18 101 33 45)(19 102 34 46)(20 103 35 47)(21 104 29 48)(64 84 96 86)(65 78 97 87)(66 79 98 88)(67 80 92 89)(68 81 93 90)(69 82 94 91)(70 83 95 85)
(1 21 85 8)(2 15 86 9)(3 16 87 10)(4 17 88 11)(5 18 89 12)(6 19 90 13)(7 20 91 14)(22 61 99 97)(23 62 100 98)(24 63 101 92)(25 57 102 93)(26 58 103 94)(27 59 104 95)(28 60 105 96)(29 83 39 77)(30 84 40 71)(31 78 41 72)(32 79 42 73)(33 80 36 74)(34 81 37 75)(35 82 38 76)(43 65 108 52)(44 66 109 53)(45 67 110 54)(46 68 111 55)(47 69 112 56)(48 70 106 50)(49 64 107 51)

G:=sub<Sym(112)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,83)(2,84)(3,78)(4,79)(5,80)(6,81)(7,82)(8,104,39,48)(9,105,40,49)(10,99,41,43)(11,100,42,44)(12,101,36,45)(13,102,37,46)(14,103,38,47)(15,28,30,107)(16,22,31,108)(17,23,32,109)(18,24,33,110)(19,25,34,111)(20,26,35,112)(21,27,29,106)(50,95)(51,96)(52,97)(53,98)(54,92)(55,93)(56,94)(57,68)(58,69)(59,70)(60,64)(61,65)(62,66)(63,67)(71,86)(72,87)(73,88)(74,89)(75,90)(76,91)(77,85), (1,50,77,59)(2,51,71,60)(3,52,72,61)(4,53,73,62)(5,54,74,63)(6,55,75,57)(7,56,76,58)(8,27,39,106)(9,28,40,107)(10,22,41,108)(11,23,42,109)(12,24,36,110)(13,25,37,111)(14,26,38,112)(15,105,30,49)(16,99,31,43)(17,100,32,44)(18,101,33,45)(19,102,34,46)(20,103,35,47)(21,104,29,48)(64,84,96,86)(65,78,97,87)(66,79,98,88)(67,80,92,89)(68,81,93,90)(69,82,94,91)(70,83,95,85), (1,21,85,8)(2,15,86,9)(3,16,87,10)(4,17,88,11)(5,18,89,12)(6,19,90,13)(7,20,91,14)(22,61,99,97)(23,62,100,98)(24,63,101,92)(25,57,102,93)(26,58,103,94)(27,59,104,95)(28,60,105,96)(29,83,39,77)(30,84,40,71)(31,78,41,72)(32,79,42,73)(33,80,36,74)(34,81,37,75)(35,82,38,76)(43,65,108,52)(44,66,109,53)(45,67,110,54)(46,68,111,55)(47,69,112,56)(48,70,106,50)(49,64,107,51)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,83)(2,84)(3,78)(4,79)(5,80)(6,81)(7,82)(8,104,39,48)(9,105,40,49)(10,99,41,43)(11,100,42,44)(12,101,36,45)(13,102,37,46)(14,103,38,47)(15,28,30,107)(16,22,31,108)(17,23,32,109)(18,24,33,110)(19,25,34,111)(20,26,35,112)(21,27,29,106)(50,95)(51,96)(52,97)(53,98)(54,92)(55,93)(56,94)(57,68)(58,69)(59,70)(60,64)(61,65)(62,66)(63,67)(71,86)(72,87)(73,88)(74,89)(75,90)(76,91)(77,85), (1,50,77,59)(2,51,71,60)(3,52,72,61)(4,53,73,62)(5,54,74,63)(6,55,75,57)(7,56,76,58)(8,27,39,106)(9,28,40,107)(10,22,41,108)(11,23,42,109)(12,24,36,110)(13,25,37,111)(14,26,38,112)(15,105,30,49)(16,99,31,43)(17,100,32,44)(18,101,33,45)(19,102,34,46)(20,103,35,47)(21,104,29,48)(64,84,96,86)(65,78,97,87)(66,79,98,88)(67,80,92,89)(68,81,93,90)(69,82,94,91)(70,83,95,85), (1,21,85,8)(2,15,86,9)(3,16,87,10)(4,17,88,11)(5,18,89,12)(6,19,90,13)(7,20,91,14)(22,61,99,97)(23,62,100,98)(24,63,101,92)(25,57,102,93)(26,58,103,94)(27,59,104,95)(28,60,105,96)(29,83,39,77)(30,84,40,71)(31,78,41,72)(32,79,42,73)(33,80,36,74)(34,81,37,75)(35,82,38,76)(43,65,108,52)(44,66,109,53)(45,67,110,54)(46,68,111,55)(47,69,112,56)(48,70,106,50)(49,64,107,51) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,83),(2,84),(3,78),(4,79),(5,80),(6,81),(7,82),(8,104,39,48),(9,105,40,49),(10,99,41,43),(11,100,42,44),(12,101,36,45),(13,102,37,46),(14,103,38,47),(15,28,30,107),(16,22,31,108),(17,23,32,109),(18,24,33,110),(19,25,34,111),(20,26,35,112),(21,27,29,106),(50,95),(51,96),(52,97),(53,98),(54,92),(55,93),(56,94),(57,68),(58,69),(59,70),(60,64),(61,65),(62,66),(63,67),(71,86),(72,87),(73,88),(74,89),(75,90),(76,91),(77,85)], [(1,50,77,59),(2,51,71,60),(3,52,72,61),(4,53,73,62),(5,54,74,63),(6,55,75,57),(7,56,76,58),(8,27,39,106),(9,28,40,107),(10,22,41,108),(11,23,42,109),(12,24,36,110),(13,25,37,111),(14,26,38,112),(15,105,30,49),(16,99,31,43),(17,100,32,44),(18,101,33,45),(19,102,34,46),(20,103,35,47),(21,104,29,48),(64,84,96,86),(65,78,97,87),(66,79,98,88),(67,80,92,89),(68,81,93,90),(69,82,94,91),(70,83,95,85)], [(1,21,85,8),(2,15,86,9),(3,16,87,10),(4,17,88,11),(5,18,89,12),(6,19,90,13),(7,20,91,14),(22,61,99,97),(23,62,100,98),(24,63,101,92),(25,57,102,93),(26,58,103,94),(27,59,104,95),(28,60,105,96),(29,83,39,77),(30,84,40,71),(31,78,41,72),(32,79,42,73),(33,80,36,74),(34,81,37,75),(35,82,38,76),(43,65,108,52),(44,66,109,53),(45,67,110,54),(46,68,111,55),(47,69,112,56),(48,70,106,50),(49,64,107,51)]])

196 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4N4O4P4Q4R7A···7F8A8B8C8D14A···14R14S···14AD28A···28X28Y···28CF28CG···28DD56A···56X
order12222244444···444447···7888814···1414···1428···2828···2828···2856···56
size11112211112···244441···144441···12···21···12···24···44···4

196 irreducible representations

dim1111111111111122222222
type+++++-+
imageC1C2C2C2C4C4C4C7C14C14C14C28C28C28D4Q8D4C4≀C2C7×D4C7×Q8C7×D4C7×C4≀C2
kernelC7×C426C4C2×C4×C28C7×C42⋊C2C14×M4(2)C4×C28C7×C4⋊C4C7×M4(2)C426C4C2×C42C42⋊C2C2×M4(2)C42C4⋊C4M4(2)C2×C28C2×C28C22×C14C14C2×C4C2×C4C23C2
# reps111144466662424242118126648

Matrix representation of C7×C426C4 in GL3(𝔽113) generated by

100
0490
0049
,
100
01120
0098
,
100
0150
0098
,
9800
001
010
G:=sub<GL(3,GF(113))| [1,0,0,0,49,0,0,0,49],[1,0,0,0,112,0,0,0,98],[1,0,0,0,15,0,0,0,98],[98,0,0,0,0,1,0,1,0] >;

C7×C426C4 in GAP, Magma, Sage, TeX

C_7\times C_4^2\rtimes_6C_4
% in TeX

G:=Group("C7xC4^2:6C4");
// GroupNames label

G:=SmallGroup(448,143);
// by ID

G=gap.SmallGroup(448,143);
# by ID

G:=PCGroup([7,-2,-2,-7,-2,-2,-2,-2,392,421,792,7059,248,14117]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^4=c^4=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽